Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

N-linked glycosite profiling and use of Skyline as a platform for characterization and relative quantification of glycans in differentiating xylem of Populus trichocarpa.

Identifieur interne : 001299 ( Main/Exploration ); précédent : 001298; suivant : 001300

N-linked glycosite profiling and use of Skyline as a platform for characterization and relative quantification of glycans in differentiating xylem of Populus trichocarpa.

Auteurs : Philip L. Loziuk [États-Unis] ; Elizabeth S. Hecht [États-Unis] ; David C. Muddiman [États-Unis]

Source :

RBID : pubmed:27491298

Descripteurs français

English descriptors

Abstract

Our greater understanding of the importance of N-linked glycosylation in biological systems has spawned the field of glycomics and development of analytical tools to address the many challenges regarding our ability to characterize and quantify this complex and important modification as it relates to biological function. One of the unmet needs of the field remains a systematic method for characterization of glycans in new biological systems. This study presents a novel workflow for identification of glycans using Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT™) strategy developed in our lab. This consists of monoisotopic mass extraction followed by peak pair identification of tagged glycans from a theoretical library using an in-house program. Identification and relative quantification could then be performed using the freely available bioinformatics tool Skyline. These studies were performed in the biological context of studying the N-linked glycome of differentiating xylem of the poplar tree, a widely studied model woody plant, particularly with respect to understanding lignin biosynthesis during wood formation. Through our workflow, we were able to identify 502 glycosylated proteins including 12 monolignol enzymes and 1 peroxidase (PO) through deamidation glycosite analysis. Finally, our novel semi-automated workflow allowed for rapid identification of 27 glycans by intact mass and by NAT/SIL peak pairing from a library containing 1573 potential glycans, eliminating the need for extensive manual analysis. Implementing Skyline for relative glycan quantification allowed for improved accuracy and precision of quantitative measurements over current processing tools which we attribute to superior algorithms correction for baseline variation and MS1 peak filtering. Graphical abstract Workflow for FANGS-INLIGHT glycosite profiling of plant xylem and monolignol proteins followed by INLIGHT tagging with semi-automated identification of glycans by light-heavy peak pairs. Finally, manual validation and relative quantification was performed in Skyline.

DOI: 10.1007/s00216-016-9776-5
PubMed: 27491298
PubMed Central: PMC5209793


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">N-linked glycosite profiling and use of Skyline as a platform for characterization and relative quantification of glycans in differentiating xylem of Populus trichocarpa.</title>
<author>
<name sortKey="Loziuk, Philip L" sort="Loziuk, Philip L" uniqKey="Loziuk P" first="Philip L" last="Loziuk">Philip L. Loziuk</name>
<affiliation wicri:level="1">
<nlm:affiliation>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hecht, Elizabeth S" sort="Hecht, Elizabeth S" uniqKey="Hecht E" first="Elizabeth S" last="Hecht">Elizabeth S. Hecht</name>
<affiliation wicri:level="1">
<nlm:affiliation>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Muddiman, David C" sort="Muddiman, David C" uniqKey="Muddiman D" first="David C" last="Muddiman">David C. Muddiman</name>
<affiliation wicri:level="1">
<nlm:affiliation>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695, USA. david_muddiman@ncsu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27491298</idno>
<idno type="pmid">27491298</idno>
<idno type="doi">10.1007/s00216-016-9776-5</idno>
<idno type="pmc">PMC5209793</idno>
<idno type="wicri:Area/Main/Corpus">001678</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001678</idno>
<idno type="wicri:Area/Main/Curation">001678</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001678</idno>
<idno type="wicri:Area/Main/Exploration">001678</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">N-linked glycosite profiling and use of Skyline as a platform for characterization and relative quantification of glycans in differentiating xylem of Populus trichocarpa.</title>
<author>
<name sortKey="Loziuk, Philip L" sort="Loziuk, Philip L" uniqKey="Loziuk P" first="Philip L" last="Loziuk">Philip L. Loziuk</name>
<affiliation wicri:level="1">
<nlm:affiliation>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hecht, Elizabeth S" sort="Hecht, Elizabeth S" uniqKey="Hecht E" first="Elizabeth S" last="Hecht">Elizabeth S. Hecht</name>
<affiliation wicri:level="1">
<nlm:affiliation>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Muddiman, David C" sort="Muddiman, David C" uniqKey="Muddiman D" first="David C" last="Muddiman">David C. Muddiman</name>
<affiliation wicri:level="1">
<nlm:affiliation>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695, USA. david_muddiman@ncsu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695</wicri:regionArea>
<wicri:noRegion>27695</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Analytical and bioanalytical chemistry</title>
<idno type="eISSN">1618-2650</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computational Biology (standards)</term>
<term>Computational Biology (trends)</term>
<term>Polysaccharides (analysis)</term>
<term>Populus (chemistry)</term>
<term>Xylem (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biologie informatique (normes)</term>
<term>Biologie informatique (tendances)</term>
<term>Polyosides (analyse)</term>
<term>Populus (composition chimique)</term>
<term>Xylème (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Polysaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Polyosides</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Populus</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="normes" xml:lang="fr">
<term>Biologie informatique</term>
</keywords>
<keywords scheme="MESH" qualifier="standards" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="tendances" xml:lang="fr">
<term>Biologie informatique</term>
</keywords>
<keywords scheme="MESH" qualifier="trends" xml:lang="en">
<term>Computational Biology</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Our greater understanding of the importance of N-linked glycosylation in biological systems has spawned the field of glycomics and development of analytical tools to address the many challenges regarding our ability to characterize and quantify this complex and important modification as it relates to biological function. One of the unmet needs of the field remains a systematic method for characterization of glycans in new biological systems. This study presents a novel workflow for identification of glycans using Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT™) strategy developed in our lab. This consists of monoisotopic mass extraction followed by peak pair identification of tagged glycans from a theoretical library using an in-house program. Identification and relative quantification could then be performed using the freely available bioinformatics tool Skyline. These studies were performed in the biological context of studying the N-linked glycome of differentiating xylem of the poplar tree, a widely studied model woody plant, particularly with respect to understanding lignin biosynthesis during wood formation. Through our workflow, we were able to identify 502 glycosylated proteins including 12 monolignol enzymes and 1 peroxidase (PO) through deamidation glycosite analysis. Finally, our novel semi-automated workflow allowed for rapid identification of 27 glycans by intact mass and by NAT/SIL peak pairing from a library containing 1573 potential glycans, eliminating the need for extensive manual analysis. Implementing Skyline for relative glycan quantification allowed for improved accuracy and precision of quantitative measurements over current processing tools which we attribute to superior algorithms correction for baseline variation and MS1 peak filtering. Graphical abstract Workflow for FANGS-INLIGHT glycosite profiling of plant xylem and monolignol proteins followed by INLIGHT tagging with semi-automated identification of glycans by light-heavy peak pairs. Finally, manual validation and relative quantification was performed in Skyline.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27491298</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1618-2650</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>409</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Analytical and bioanalytical chemistry</Title>
<ISOAbbreviation>Anal Bioanal Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>N-linked glycosite profiling and use of Skyline as a platform for characterization and relative quantification of glycans in differentiating xylem of Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>487-497</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00216-016-9776-5</ELocationID>
<Abstract>
<AbstractText>Our greater understanding of the importance of N-linked glycosylation in biological systems has spawned the field of glycomics and development of analytical tools to address the many challenges regarding our ability to characterize and quantify this complex and important modification as it relates to biological function. One of the unmet needs of the field remains a systematic method for characterization of glycans in new biological systems. This study presents a novel workflow for identification of glycans using Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT™) strategy developed in our lab. This consists of monoisotopic mass extraction followed by peak pair identification of tagged glycans from a theoretical library using an in-house program. Identification and relative quantification could then be performed using the freely available bioinformatics tool Skyline. These studies were performed in the biological context of studying the N-linked glycome of differentiating xylem of the poplar tree, a widely studied model woody plant, particularly with respect to understanding lignin biosynthesis during wood formation. Through our workflow, we were able to identify 502 glycosylated proteins including 12 monolignol enzymes and 1 peroxidase (PO) through deamidation glycosite analysis. Finally, our novel semi-automated workflow allowed for rapid identification of 27 glycans by intact mass and by NAT/SIL peak pairing from a library containing 1573 potential glycans, eliminating the need for extensive manual analysis. Implementing Skyline for relative glycan quantification allowed for improved accuracy and precision of quantitative measurements over current processing tools which we attribute to superior algorithms correction for baseline variation and MS1 peak filtering. Graphical abstract Workflow for FANGS-INLIGHT glycosite profiling of plant xylem and monolignol proteins followed by INLIGHT tagging with semi-automated identification of glycans by light-heavy peak pairs. Finally, manual validation and relative quantification was performed in Skyline.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Loziuk</LastName>
<ForeName>Philip L</ForeName>
<Initials>PL</Initials>
<AffiliationInfo>
<Affiliation>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hecht</LastName>
<ForeName>Elizabeth S</ForeName>
<Initials>ES</Initials>
<AffiliationInfo>
<Affiliation>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Muddiman</LastName>
<ForeName>David C</ForeName>
<Initials>DC</Initials>
<AffiliationInfo>
<Affiliation>W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, 116 Cox Hall, Campus Box 8201, Raleigh, NC, 27695, USA. david_muddiman@ncsu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 GM008776</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>08</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Anal Bioanal Chem</MedlineTA>
<NlmUniqueID>101134327</NlmUniqueID>
<ISSNLinking>1618-2642</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="Y">Computational Biology</DescriptorName>
<QualifierName UI="Q000592" MajorTopicYN="N">standards</QualifierName>
<QualifierName UI="Q000639" MajorTopicYN="N">trends</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011134" MajorTopicYN="N">Polysaccharides</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Monolignol</Keyword>
<Keyword MajorTopicYN="N">N-linked glycans</Keyword>
<Keyword MajorTopicYN="N">N-linked glycosite</Keyword>
<Keyword MajorTopicYN="N">Populus trichocarpa</Keyword>
<Keyword MajorTopicYN="N">Skyline</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>06</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27491298</ArticleId>
<ArticleId IdType="doi">10.1007/s00216-016-9776-5</ArticleId>
<ArticleId IdType="pii">10.1007/s00216-016-9776-5</ArticleId>
<ArticleId IdType="pmc">PMC5209793</ArticleId>
<ArticleId IdType="mid">NIHMS808447</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Vis Exp. 2016 Mar 08;(109 ):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27023253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2015 Sep 8;127(Pt A):211-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26003531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2013 Sep;24(9):1376-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23860851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2011 Oct;10(10):O111.009381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21784994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2013 May 01;13:96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23634722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Jan;51(1):144-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jun;16(6):1446-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2013 Dec 6;12(12):5820-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24144163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2009 Feb;8(2):365-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18974045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Sep;118(1):125-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2014 Jun 17;46:13.24.1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24939128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2011 Sep;Chapter 13:Unit 13.15-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21901740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8481-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26109572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2015 Oct 2;14(10):4158-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26325666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 1995 Jul;5(5):517-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8563138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1992 Aug 15;205(1):151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1443554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2015 Jul 21;87(14):7305-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26086806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 30;98(3):944-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1999 Dec 6;1473(1):4-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10580125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Sep;38(1-2):31-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9738959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2015 Oct 2;14(10):4394-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26347193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2014 Feb;14(2-3):169-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24307133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2012 Mar;Chapter 13:Unit13.18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22389013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22160716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2012 Jun 1;11(6):3390-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22524869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 1992 Jun;2(3):241-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1498421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Apr 1;26(7):966-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20147306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1997 Oct 1;249(1):195-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9363772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):317-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):894-914</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24619611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Proteomics. 2011 Jun;8(3):317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21679113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2016 Jan 4;15(1):291-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26616352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Jul;221(5):739-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15940463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2015 Dec 15;87(24):11948-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26593774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2007 Aug 1;79(15):5620-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17580982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1991 Aug 1;199(3):647-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1868849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2014 Feb 7;13(2):777-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24289162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2015 Feb 6;14(2):1308-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25495137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Analyst. 2014 Nov 7;139(21):5439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25154770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(9):R183</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17784955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2262-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226227</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Loziuk, Philip L" sort="Loziuk, Philip L" uniqKey="Loziuk P" first="Philip L" last="Loziuk">Philip L. Loziuk</name>
</noRegion>
<name sortKey="Hecht, Elizabeth S" sort="Hecht, Elizabeth S" uniqKey="Hecht E" first="Elizabeth S" last="Hecht">Elizabeth S. Hecht</name>
<name sortKey="Muddiman, David C" sort="Muddiman, David C" uniqKey="Muddiman D" first="David C" last="Muddiman">David C. Muddiman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001299 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001299 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27491298
   |texte=   N-linked glycosite profiling and use of Skyline as a platform for characterization and relative quantification of glycans in differentiating xylem of Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27491298" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020